Algebraic Geometry Example Sheet 2: Lent 2025

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at hk439@cam.ac.uk. In all questions, k is an algebraically closed field of characteristic 0.

1. Show that the set of algebraic subsets of \mathbb{P}^n are the closed sets of a topology on \mathbb{P}^n .

2. Given distinct points P_0, \ldots, P_{n+1} in \mathbb{P}^n , no (n+1) of which are contained in a hyperplane, show that homogeneous coordinates may be chosen on \mathbb{P}^n so that $P_0 = (1 : 0 : \ldots : 0), \cdots, P_n = (0 : \ldots : 0 : 1), P_{n+1} = (1 : 1 : \ldots : 1)$. [This generalizes to arbitrary n a result you are familiar with from complex analysis when n = 1.]

3. Given hyperplanes H_0, \ldots, H_n of \mathbb{P}^n which satisfy $H_0 \cap \cdots \cap H_n = \emptyset$, show that homogeneous coordinates x_0, \ldots, x_n can be chosen so that each H_i is the locus $x_i = 0$.

4. Let V be a hypersurface in \mathbb{P}^n and L a projective line in \mathbb{P}^n . Show that V and L intersect in a non-empty set. [A projective line in \mathbb{P}^n is a subvariety defined by n-1 linearly independent homogeneous linear equations.]

5. Write down the projective closures of the following affine plane curves and compute their intersections with the three coordinate lines Z(x), Z(y), Z(z) in \mathbb{P}^2 .

$$C_1 : xy = x^6 + y^6,$$

 $C_2 : x^3 = y^2 + x^4 + y^4$

6. The Segre surface $\Sigma_{1,1} \subset \mathbb{P}^3$ is given by $Z(x_0x_3 - x_1x_2)$. Find a pair of disjoint lines contained in $\Sigma_{1,1}$. Find a pair of intersecting lines contained in $\Sigma_{1,1}$.

7. Consider the affine twisted cubic $V = \{(t, t^2, t^3) \ t \in k\} \subset \mathbb{A}^3$. Observe that $V = Z(x_2 - x_1^2, x_3 - x_1^3)$ and V is irreducible. Show that $Z(x_2x_0 - x_1^2, x_3x_0^2 - x_1^3) \subset \mathbb{P}^3$ is not irreducible. Compute generators for the ideal of the projective closure of V in \mathbb{P}^3 .

8. Consider the cubic surface $S \subset \mathbb{P}^3$ given by $Z(x_0^3 - x_1^3 + x_2^3 - x_3^3)$. Find a line ℓ contained on this surface. Find a hyperplane $P \subset \mathbb{P}^3$ which contains your line with $S \cap P$ a union of three lines.

9. The <u>Cremona involution</u> on \mathbb{P}^2 is the map $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ defined by

$$(x_0: x_1: x_2) \mapsto (x_1 x_2: x_0 x_2: x_0 x_1).$$

Show this is a (birational) involution. Let ℓ be the line $Z(x_0 + x_1 + x_2)$ and let $U \subset \mathbb{P}^2$ be an open set in the domain of φ . Calculate the ideal of the Zariski closure of $\varphi(U \cap \ell)$.

10. Let $Q \subset \mathbb{P}^{n+1}$ be an irreducible quadric hypersurface. Prove that Q is birational to \mathbb{P}^n and use this to calculate the function field of Q. [Hint: think about how we parametrized the circle in lecture 1].